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directly above one another can he sigmficant. In the case 
mentioned above, the temperatures increased by more than 
IO”,, with respect to the case of no interaction, i.e. one device 
only. 

thickness with plane localized heat sources on 11s suriacc. 
Ph.D. Dissertation, Lehigh University. Bethlehem. I’?. 
( 1969). 

The numerical results ofcases 3 and 4 were obtained with a 
mapping function for which AX,,i,, and C were equal to 0.05 
and I. 125, respectively. as defined in ref. [5J. An 84 x 2 I grid 
was employed such that nodes 3 1 through 39 represented the 
heat source. Minimum AX spacings where fixed between 
nodes 25 and 45. These numerical results were obtained with 
the following transient coefficients and time step: a, = 0.01. 
y,#, 7 1.0. x(9 mz 1.0 and AT = 0.02. The computations required 
about 1.2 CPU hours on Bell Laboratories IBM 37Oi164 
computer. These results were obtained with significantly less 
computing time than the results of case 1 (2 CPU hours1 LSJ. 
Although a larger number of nodes were used in the present 
\ludq, the new mapping function resulted in a smaller overall 
duct length. The time step used for the new results was twice 
that used in ref. [5]. Earlier experimentation with this code 
showed that heat flux boundary specification significantly 
increased the necessary computing times, as compared with 
constant wall temperature boundary conditions. The overall 
duct length was also observed to play a pronounced role in 
determining the time for convergence. 
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F’or future work, the strong effect of axial conduction found 
experimentally in these local source problems requires the 
rigorous addition of axial conduction into the numerical 
solution. Another problem of interest would be to study the 
effects on heat transfer of a strong heat source upstream of an 
equivalent or weaker source along the same wall, and the 
resulting wake interaction. 
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NOMENCLATURE 

Greek symbols 
0). frequency of harmonic excitation ; 
i. eigenvalue in Fourier method: 
I’. dimensionless frequency parameter: 

eigenvalue : 
i-1 (equivalent) diffusivity ; 
1. coefficients in low frequency series expansion of < 

Subscripts 

M. refers to matrix layer ; 

F, refers to filler layer: 
eq. refers to equivalent property 

I. INTRODUCTIOh 

THE PROHL~M of determining the temperature distribution in 
bilaminates which are stacked parallel to an harmonically 
excited heat flowoffrequencyw(Fig. 1). usingeffective thermal 

* Present address : Sun-Life of Canada, Wellesley, Mass. 
L:.S.A. 

properties, has drawn considerable attention in recent years. 
In the case ofa steady exciting heat source, it is well known that 
a single parameter, the equivalent diffusivity ,I_. will 
characterize the heat Bow. Even for composites of materials 
with similar properties, the equivalent diffusivity will he 
adequate for the non-steady source of any low frequency. On 
the other hand, if (0 is not vanishingly small. or if the materials 
differ greatly, then it has been suggested [5] that ~1.~ should bc 
replaced by two equivalent diffusivities, 11~ and qA. diffusivit! 
for phase and amplitude respectively. each dependent on the 
frequency. An experimental study by Truong and Zinsmeiscer 
[6] confirmed the failureofthestaticequivalent diffusivity anil 
demonstrated that, in the cases they considered. ,I~, was 
roughly equal to q_, whereas ‘la was less than qctr. These rehultx 
were the mc)re obvious in composites of verl unlike material 
Difficulties inherent in determining experimental values of,/, 
and qp at high exciting frequencies highlight the importance of 
an analytic solution of the heat equation that will yield explicil 
values for v, and qp 

Wepresentananalyticattackoftheproblemofdeterminln# 
these effective thermal constants. We find it more convement 
to use a dimensionless frequency parameter 18. Expanding the 
work of Horvay [5] to develop a frequency dependent !T,~, 
allows explicit results for qA and qr,. Numerical refinements oi 
‘I,, using Pade approximants and Newton’s method. as weil a~ 
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FIG. 1. A 2-layered laminated composite of type M-F-M. 

an alternate expansion in the case of extremely high Y, are 
examined. 

Consulting Fig. 1, where matrix layers, labelled M, and filler 
layers, labelled F, with volume fraction f, are stacked, we 
search for the temperature distribution in the composite, 

T = 

i 

G$ 0 G Y G (1 -f)n. 

TF (1-f)n<y<n. 
(1) 

The conventional approach is to taken_ as a weighted average 
of the constituent layers 

(1 -fh +fk, 
fleq = k-J[pc’cq = (1 -f) (@qM +f(& c-4 

where f, k, and pc are the volume fraction of the filler layer, 
thermal conductivity and the heat capacity, respectively. 
Clearly equation (2) does not represent a frequency dependent 

n.s. 
Temperature in the composite is governed by the heat 

equation (3) where T is a function of position and time 

(V-~;)7& J=M,F. 

The restriction that only harmonic excitations will be 
considered allows equation (3) to be written as 

J=M,F 

where i indicates a phase shift. Equation (4) is subject to the 
boundary conditions (5) 

at y=O: fYT/dy=O, 

y = (I -j)z : TM = T, and (dT,,,/dy)/~~ 

= (aTr/dY)/Kr, (5) 

x = 0: T = exp( - iwt)X(y), 

x=cc: T=O. 

The solution of equation (4) subject to conditions (5) in the 
form of products 

wM = exp( - Ax)ll/&) 

wF = cxp( - lx)+r(y) 
(6) 

where 1 = & + iI,, was examined in detail by Horvay [S]. 
It was found that 

1z = z’/( 1 -f)2 - iw/rJ, = z’z/( 1 -f)z -in+& (7) 

A dimensionless frequency parameter v was introduced 

” = w(t -f)“(l/rJ- I/%$). (8) 

The solution of equation (4) leads to an eigenvalue equation (9) 
in which z and z’ are the roots 

0 = rrA/a = J tan J + b/aJ’ tan aJ’, 

J = ZK, J’ = Z’K, 

a = f/(1 -f), b = a~&,,. 
(9) 

2. LOW FREQUENCY ESTIMATE OF THE ROOTS 

Weexpand J in whole powers of v to obtain the roots of the 
eigenvalue equation (9) which can then be used to solve neq, 

5’ = (zn)’ = ivsza, + v2rr4~z + iv3n6a, + 

(Jy = (z’n)’ = (z ‘+iv)7rz = ivr?B, + vz7r4az + . 
(10) 

The eigenvalue equation may be represented as a series as well 

0 = J tan J+ b/aJ’ tan aJ 

= J* + b(J’)’ + 1/3[J4 + ba2(J’)4] 

+2/l 5(J6 + ba”(J’)6) + (‘1) 

Using the notation of ref. [S], 

Kb = (1 -f)KM; i, = fKM, 

K; = frc,; c2, = (1 -f)Kr, 

, ,_ _ _ 
K,, = KH+KFK = KM+KF, (12) 

p1 = 1+a,. 

Theexpressionsinequations(lO)aresubstitutedintoequation 
(11), and we solve for the a’s by equating the coefficients of 
successive powers of v to 0. To the 1st order, 

0 = i&a, + bivn*(l +a,), 

so 

a, = ~ b/( 1 + b) = - K;/K,,. 

Similarly, for higher orders of v we find 

az = $a: + ba’P’)/( 1 + b), 

1 
= 3K;t,:/K~v 

a3 = $a: + ba“P3) - $qcz, + baz/Ia,)/(l + b), 

(13) 

(14) 

212 
a4 = - +a: + ba4b4) + A(afa’ + ba4/?‘a,) 

- ;(a:- ala3 + ba2(a: -2fia,))/(l+ b). 

Determination of the a’s uniquely determines values of the 
roots z and z’ which may be manipulated to solve for qeqr 

- ic&s = ,I2 = -iw/nM+zz/(l-f)z, 

= -iw/nM +(ivnza, + v2n4az +iv37Pa, + .)/(l 
-“f)‘rr’. (15) 

Therefore, 

CfLJ1 = lhu - ( itda, + vzrc4az + i&a, + 

i(1 -f)z7t’w >. 
Approximations of n;’ to successive orders of v are listed 
below : to order 0 : 

c’L,1- 1 = 9hl 1 + K;/K,v(% 1 -Vii ‘1; 

and recursively from there by 

1%&t, !i + 1 = cv,,l,;e, k 

(16) 

- [iwi?( 1 -f)Z]” 
1 l”+’ ( > ~ - - ak+zV 

nF ‘IhI 

where 

v= 
1 if k is even, 

-iifkisodd. 
(17) 
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Table I. rlsq via series, Pade [l;l] and approximants, and Newton’s method (r),, writtrn: teal. ~magm,tr\ I 

, 

f = 0.3 
0.0000 1 
0.01 

0. I 
I 

IO 

t = 0.6 
0.0000 I 
0.01 
0.1 
I 

IO 

1 = (1.Y 
0.0000 1 
0.0 I 
0.1 
I 

IO 

Series [2,2j 

3.2X347, m-4.0 x 10 ” 3.28347, m-4.0 )i 10 ’ 
3.2X35. ~- 0.004 3.2835, ~ 0.004 
3.28588. -0.03985 3.28588. -- 0.03985 
3.41041, m-O.20218 3.46045, 0.293 12 
0.00686, 0.00093 3.92823, --0.10678 

32x347. 4.0 x IO I’ 
3.1835, 0.004 
3.285XX. 0.039X5 
3.45X67. 0.29243 
3.95041. ~0.14877 

2.18679, 7.5 x IO 3 2.18679, ~~ 7.5 x IO- ’ 
2.19084, PO.07522 2.19084, 0.07523 
2.31179, 0.17753 2.5016, 0.58515 
0.00089, 9.9 x 10 ’ 3.54242, PO.25198 
X.9 x IO- ‘, 9.9 x 10 “’ 3.58877, -0.02606 

2.18679. 7.5 x IO . 
2190x4. 0.07523 
2.495X 1, 0.58286 
3.62423. ~0.34588 
3.7341 x. ~0.0397 

0.66163, PO.00144 0.66163, --0.00144 
0.00985. 0.00302 I .37600, m-O.791 32 
9.x x 15 :. 3.1 x 15 H 2.23328, .- 0.17409 
9.9 x IO- I’. 3.1 x IO-‘” 2.25237, PO.01762 
9.9 x IO- ‘. 3.09 x 10~~‘” 2.25286, - 0.00126 

0.66163. -0.00144 
1.32217. -0.85697 
2.44X83. 0.2392 
2.48 I 17. ~~ 0.02436 
2.48 149. 0.00244 

0.66163. 0.002~7 
4.3635% t).7650? 
?,64974 0.70177 
3.9 16 10 t I.77066 
3 XXO43. i),t~OO~-i~~ 

Note that theOthorderapproximationisidentica1 to thestatic 
rlCq in equation (2). as expected. 

A [ l.!l] and [2;2] Pade approximant was used to refine the 
series representation of qCq. The Pade adjusted qC, was then 
used as a first guess in Newton’s iterative method to solve the 
eigenvalue equation (9). A computer program was developed 
to calculate the roots to within a tolerance of lo- ‘. These roots 
were then back-substituted into equation (15) to obtain a 
Newtonized rlCs value. Results of the series, Pade, and 
Newtonized approximations are summarized tn Tables I and 2. 

3. THE HIGH FREQUENCY EXPANSION 

The series representation for qcq developed in equations 
(16)<20) diverges rapidly for w $ 1. or for +,, and qt. < I. To 
overcome this problem we expand / as in ref. [4]. 

A derivation similar to that used tn Section 2 leads to an 
explicit representation for q,, iis 

Table 2. rlCq vta series, Pade [l/l], Pade [2/2] and Newton. q,, = 1.71. qfi : 1.1X (qcq written: real. rmagmaryl 

\ Serves It )I IL 2 J Yc\\,c~,, 

/ = 0.3 
0.0000 I 1.54940, -1.37 x 10 h 1.54940, ~~ 1.37 x 10 (’ 1.54940, 1.32 x 10 ” l.~4940. 7.079 * 10 ” 
0.0 I 1.54941, -0.00137 1.54941. -0.00137 1.54941. -0.00127 1.54940. 0.00274 
0. I 1.55004, - 0.01370 1.55010, PO.01367 I .55009, - 0.0 136X ! ..549 14. 0.02735 
1 1.13339, -0.06841 1.60497, PO.10857 1.60393, 0.11016 1.53911. 0.23573 

IO 0.00037, 4.80 x IO ’ 1.80727. 0.05039 1.X1 567. m-O.05380 0.7900X. 0.78613 

/ = 0.6 
o.ooOil I 1.39018. -6.72 x IO ~’ 1.39018. --6.72 x 10 ” 1.3900X. -6.72 x IO ” l.iYOlh. 0.01343 
0.0 I 1.39017, -0.00672 1.39017. 0.00672 1.39017, -0.00672 1.39026. 0.01343 
0. I 1.39465, -0.07324 1.38866, -0.06713 I .39144, -0.06957 I .39847 0.133x3 
I 0.0298 1, - 0.00282 I .24508, - 0.63872 I .6720X, -0.57094 1.17378. -0.67 I64 

IO 2.95 x lo-(‘. -2.44 x 10mh ~ 1.08659, ~ 1 I)9027 2.74525. -0.26658 2.xX309. -041722 

1 = 0.9 
0.00001 1.23232, --- 1.865 x IO ’ 1.23232. -1.X6 x IO- ’ 1.23232, 1.86 x 10 i 1.23232. 3.7 k IO 5 
0.01 1.23848, -0.01565 1.22822, -0.01759 1.22888. PO.01769 1.23600. 0.040 I2 
0.1 PO.01 488, 0.0004X 1.16515, -0.02878 1.15710, -0.03922 I.382 17. 0.09497 
I _ 1.47 x 10-6,4.x9 x lo-” 1.15297, -0.00340 1.13689. -0.00498 I. 17452. -- 0.50306 

10 -1.47 x 15-‘O.4.89 x IO-‘” 1.15282, -0.00034 I. I 3663, - 0.0005 I io.542. 0. I x970 
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Table 3. qA and Q, via Pade [2/2] and Newton when ‘la = 4.11, Table4. qA and qp via Pade [2/2] and Newton when q,, = 1.71, 
qF = 0.0116 qF = 1.18 

Y 4*CWl 4PCWl flA VP 

f = 0.3 
0.0000 1 3.28347 
0.01 3.27950 
0.1 3.24675 
1 3.20131 

10 3.80983 

f = 0.6 
0.00001 2.18672 
0.01 2.1194 
0.1 2.08810 
1 3.32483 

10 3.69558 

f = 0.9 
0.00001 0.6602 
0.01 1.02421 
0.1 2.24248 
1 2.45716 

10 2.47906 

2.18687 2.18672 2.18687 
2.27003 2.3586 2.05539 
3.3114 5.9136 2.06918 
4.02289 3.29636 3.73315 
3.77402 4.32368 3.84644 

0.66307 0.66452 0.65877 
3.45276 3.7777 5.35486 
2.72544 2.18237 3.68436 
2.50589 4.86183 3.3717 
2.48394 3.88000 3.88086 

3.28348 3.28347 3.28348 
3.28750 3.29155 3.27555 
3.32646 3.37075 3.21110 
3.79034 4.45012 3.18081 
4.1078 3.80055 4.19283 

4. THE PHASE AND AMPLITUDE SEPARATION 

The solution of equation (4) subject to T(0, y, t) = cos cot 
may be written as 

T&y, t) = exp [ -x(0/24.,)“~] cos [ot -x(w/2iy_)‘/2] (21) 

where qeq is allowed to be complex. If we instead write 

T(x, y, t) = exp[ -_~(w/2rl~)‘~‘] cos [wt -x(~/2t#~] (22) 

with qA and + real, then we can relate qA, qp to q_,. For 
example, we know that 

i = (w/24,,)“’ (1 - i) 

whereas equation (22) leads to 

i = (0/2~~)“’ - i(w/2qp)1/2. 

Since 

(23) 

(24) 

if we write qciq’ = R fil we get the two equations 

r/A1-qpl=21, (26a, b) 

(~AvP)-~ = R’. 

For example, if qeq is real then qA = qp = q_,, and this is 
experimentally known to be false unless Y < 1. 

We can in fact solve the system exactly to get the following 
results : 

IrlA]-’ = +l+(12+RZ)1’2, 

[rlp]-1 = --I+(IZ+RZ)“2. (27a, b) 5. 

Numerical results using I and R given by the Newtonized 
values of qeq are used directly in equations (27), and are 
summarized in Tables 3 and 4. The values derived in this 
manner agree substantially with those found by Truong and 

f = 0.3 
0.0000 1 1.54940 1.54940 1.54941 1.54940 
0.01 1.54804 1.44078 1.55215 1.54667 
0.1 1.53659 1.56395 I .57723 1.52250 
1 1.50461 1.72598 1.83485 1.35232 

10 1.7642 1 1.87191 0.65387 3.78083 

f = 0.6 
0.00001 1.39018 1.39019 1.3902 1.39017 
0.01 1.38349 1.39694 1.40389 1.37703 
0.1 1.32691 1.46641 1.55278 1.28267 
1 1.33982 2.61404 0.90328 2.68666 

10 2.51508 3.05327 2.54814 3.40014 

f = 0.9 
0.00001 1.23230 1.23234 1.23236 1.23228 
0.01 1.21156 1.24695 1.27812 1.19779 

0.1 1.11983 1.19837 1.48738 1.29655 
1 1.13195 1.14190 0.91677 2.10745 

10 1.13614 1.13713 1.34870 1.73414 

Zinsmeister [6], the main difference being a tendency on the 
part of the Newtonized values to jump around, whereas the 
values from the Pade approximationdo demonstrate the 
expected behavior. One explanation ofthe strange behavior 
from certain Newtonized values is that the method might be 
picking up higher order eigenvalues. In the analytic approach 
here, it is clear that as w + 0, both qA and qp approach )leq Both 
the analytic and experimental approach clearly demonstrate 
that the static equivalent diffusivity is unreliable for non- 
vanishingly small values of v. In short, the double-diffusivity 
model is a significant improvement over the static qcs model. 
Since the quantities qF, Q,,. I+, K~, f are readily obtained, there 
is no practical reason to insist upon the static equivalent. 
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