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directly above one another can be significant. In the case
mentioned above, the temperatures increased by more than
10°%; with respect to the case of no interaction, i.e. one device
only.

The numerical results of cases 3 and 4 were obtained with a
mapping function for which AX ;, and C were equal to 0.05
and 1.125, respectively, as defined in ref. [5]. An 84 x 21 grid
was employed such that nodes 31 through 39 represented the
heat source. Minimum AX spacings where fixed between
nodes 25 and 45. These numerical results were obtained with
the following transient coefficients and time step: o, = 0.01,
4, = 1.0, 2 = 1.0 and At = 0.02. The computations required
about 1.2 CPU hours on Bell Laboratories IBM 370,168
computer. These results were obtained with significantly less
computing time than the results of case 1 (2 CPU hours) [5].
Although a larger number of nodes were used in the present
study, the new mapping function resulted in a smaller overall
duct length. The time step used for the new results was twice
that used in ref. [5]. Earlier experimentation with this code
showed that heat flux boundary specification significantly
increased the necessary computing times, as compared with
constant wall temperature boundary conditions. The overall
duct length was also observed to play a pronounced role in
determining the time for convergence.

Forfuture work, the strong effect of axial conduction found
experimentally in these local source problems requires the
rigorous addition of axial conduction into the numerical
solution. Another problem of interest would be to study the
effects on heat transfer of a strong heat source upstream of an
equivalent or weaker source along the same wall, and the
resulting wake interaction.
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NOMENCLATURE

Greek symbols
w, frequency of harmonic excitation ;
A, eigenvalue in Fourier method :
v, dimensionless frequency parameter :
I eigenvalue:
x,  (equivalent) diffusivity ;
%, coefficients in low frequency series expansion of ¢.

Subscripts

M, refers to matrix layer;
F. refers to filler layer:
eq, refers to equivalent property.

1. INTRODUCTION

THE PROBLEM of determining the temperature distribution in
bilaminates which are stacked parallel to an harmonically
excited heat flow of frequency w(Fig. 1), using effective thermal

* Present address: Sun-Life of Canada, Wellesley, Mass.
USA.

properties, has drawn considerable attention in recent years.
Inthe case of asteady exciting heat source, it is well known that
a single parameter, the equivalent diffusivity 7., will
characterize the heat flow. Even for composites of materials
with similar properties, the equivalent diffusivity will be
adequate for the non-steady source of any low frequency. On
the other hand, if @ is not vanishingly small, or if the materials
differ greatly, then it has been suggested [ 5] that 5, should be
replaced by two equivalent diffusivities, 17, and n,, diffusivity
for phase and amplitude respectively, each dependent on the
frequency. An experimental study by Truong and Zinsmeister
[6] confirmed the failure of the static equivalent diffusivity und
demonstrated that, in the cases they considered. #, was
roughly equal to#,,, whereas 5, was less than .. These results
were the more abvious in composites of very unlike material.
Difficulties inherent in determining experimental values of 4,
and 7 at high exciting frequencies highlight the importance of
an analytic solution of the heat equation that will yield explicit
values for 17, and #p.

We present an analytic attack of the problem of determining
these effective thermal constants. We find it more convenient
to use a dimensionless frequency parameter v. Expanding the
work of Horvay [5] to develop a frequency dependent #,,
allows explicit results for 7, and #p. Numerical refinements of
foq Using Pade approximants and Newton’s method. as weil as
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FiG. 1. A 2-layered laminated composite of type M—F-M.

an alternate expansion in the case of extremely high v, are
examined.

Consulting Fig. 1, where matrix layers, labelled M, and filler
layers, labelled F, with volume fraction f, are stacked, we
search for the temperature distribution in the composite,

T:{TM 0<y<(l—fm "
Te (I-fir<y<sn

Theconventional approachis to take ., asa weighted average
of the constituent layers
(L1 e+ &
Neq = kea/[PCleq = o @
(1) (pm+Spc)e

where f, k, and pc are the volume fraction of the filler layer,
thermal conductivity and the heat capacity, respectively.
Clearly equation (2) does not represent a frequency dependent
r’e -

11l‘emperature in the composite is governed by the heat
equation (3), where T is a function of position and time

, 1@
V-5 T J=MF. )
J

The restriction that only harmonic excitations will be
considered allows equation (3) to be written as

<v2 _ iﬁ>v, —0, J=MF @

fy

where i indicates a phase shift. Equation (4) is subject to the
boundary conditions (5)

at y=0: 0T/dy=0,
y=(-fIn: Ty=Te and (0T/0y)/Ku
= (0Tg/0y)/xF, )
x=0: T = exp(—iwt)y(y),
x=w: T=0

The solution of equation (4) subject to conditions (5) in the
form of products

Wy = exp(— 20, ()
we = exp(— X))

where A = Az +14,, was examined in detail by Horvay [5].
It was found that

A% =2 [1—f) ~iwfmy = 221 =fP —iofpe. ()
A dimensionless frequency parameter v was introduced
v=a(l=f) (1/ne—1/ny). ®

The solution of equation (4) leads to an eigenvalue equation (9)
in which z and z' are the roots

(6

0= nA/a = J tan J+b/aJ’ tan aJ’,
J=1zn, J =17, 9)
a= f/1-f),

b = axg/ry.
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2. LOW FREQUENCY ESTIMATE OF THE ROOTS

We expand J in whole powers of v to obtain the roots of the
eigenvalue equation (9) which can then be used to solve #,,

J? = (zm)? = ivela, +vinte, +ivintas + ... 10

(J)? = (Z'n)? = (22" ivm? = ive? B, +vinta, + ... a0

The eigenvalue equation may be represented as a series as well
0=J tan J+b/at’ tan aJ’

= 24+ +1/3[J*+ ba¥(J)*]

+2/15J5+ba*(J)O)+ ... (1)
Using the notation of ref. [5],
ku=1—fky; Ry=frn,
kg = fxp; Kp = (1=,

Koy = KM+ KER = Ry + R, (12)
By =14a.

The expressionsin equations(10) are substituted into equation
(11), and we solve for the a’s by equating the coefficients of
successive powers of v to 0. To the 1st order,

0 = ivr2a, + biva®(1 +ay),

SO
oy = —b/(1+b) = —Kp/K,, (13)
Similarly, for higher orders of v we find
1
a = g(af +ba’g2)/(1+b),
= EK'FEM'?/KSV (14)

2 2
a3 = E(af +ba*p’) — letehy ba®Ba,)/(1+b),

272 6
oy = — —7-'—(oz‘f+ ba*p*) + E(afaz +ba*B%ua,)

1 2 20,2
- 5(0(2 — oy a3+ ba*(az —2Bas))/(1 +b).
Determination of the «’s uniquely determines values of the
roots z and z’ which may be manipulated to solve for 7.,

—lwfeg = 4 = —iw/ny+22/(1-f)?,

= —iw/my+(iveie, +vinta, +ivinu, + .. )1
=% (15)

Therefore,

Meal ' = <1/rlM - e

Approximations of #.,' to successive orders of v are listed
below : to order O:

iva?e; +vinta, +iveCas + .. )

[Mea] ™" =t K/l = s (16)
and recursively from there by
[neq](;(}erk-#l = [’qu]c;c}erk
) 1 1 k+1
—[iwr*(1—£)*]* (’77 - '7_> oe+2V
F M

where

_ lifkiseven, 17

~ | —iifkisodd. (17
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Table 1. 4., via series, Pade [1/1] and approximants, and Newton's method (174 written: real, imaginary)

v Series [1/1] [2/2] {Newton]

1'=03

0.00001 328347, -40 x 107° 3.28347, —4.0 x 107¢ 328347 40 x 1070 328347, 40 < t0 ¢

0.01 3.2835, —-0.004 32835, —0.004 3.2835, --0.004 338352 000K

0.1 3.28588, —0.03985 3.28588, -~ 0.03985 3.28588. -0.03985 328802, 007978

! 341041, --0.20218 3.46045, —0.29312 3.45867. -0.29243 365822 061710

10 0.00686, - 0.00093 3.92823, -0.10678 395041, —0.14877 398226, .19567
=06

0.00001 2.18679, 7.5 x 10°° 218679, —7.5 x 1073 218679, - 7.5 x 1077 248679, - TR j007

0.01 2.19084, —0.07522 2.19084, -0.07523 2.19084. - 0.07523 219139, 615089

0.1 231179, -0.17753 2.5016, - 0.58515 249581, - 0.58286 268675, 14764

1 0.00089,9.9 x 1077 3.54242, —0.25198 3.62423, —0.34588 349442, 0. 21753

10 89 x 107%,99 x 107 1% 358877, —0.02606 373418, -0.03922 406417 0.2378!
f=09

0.00001 0.66163, —0.00144 0.66163, --0.00144 0.66163, --0.00144 0.66163.  0.00287

0.01 0.00985, 0.00302 1.37600, —0.79132 1.32217, —0.85697 4.36358.  0.76503

0.1 98 x 157 7.3.1 x 15°% 223328, - 0.17409 244883, - 0.2392 2.64974. - 0.70177

[ 99 x 1071, 3.1 x 1071? 2.25237, —0.01762 248117, -0.02436 391616, —-0.72066

10 9.9 x 107°,3.09 x 107'% 225286, - 0.00126 248149, --0.00244 38K043. -0.00043
Note that the Oth order approximation is identical to the static G o= )
Heq In equation (2), as expected. , S FIPR (19

A [1/1] and [2/2] Pade approximant was used to refine the G = 1=/ /8 e

series representation of 7. The Pade adjusted 5., was then Gy o o mpl P ARy )
used as a first guess in Newton’s iterative method to solve the i o , e e
eigenvalue equation (9). A computer program was developed Gogy=1 By kg) + 7 16 (1 f 1 (8nf ).

to calculate the roots to within a tolerance of 10~ 5. These roots
were then back-substituted into equation (15) to obtain a
Newtonized #,, value. Results of the series, Pade, and
Newtonized approximations are summarized in Tables | and 2.

3. THE HIGH FREQUENCY EXPANSION

The series representation for ., developed in equations
(16)-20) diverges rapidly for v » 1, or for nyyand 5 < 1. To
overcome this problem we expand J as in ref. [4],

J=G WG+ G v Gy (18)

We find that

. P
Gpp= 1127,

A derivation similar to that used in Section 2 leads to an
explicit representation for #,, as

' i
ol =] Uiy 4+ - o
£7eqd Tr 40

(2,\.‘—]1 2

' 4,‘.’;;3@'? 2,32

iy 2Ry
oy [0 7

+ 38 A et 0 | 120

where

Q = (L~ Tyl

Table 2. 5, via series, Pade [1/1], Pade [2/2] and Newton, n, = L7L np = 118 (5, written: real, imaginary)

it Series j11] 12.2] Newton
/=03
0.00001 1.54940, —1.37 x 10 © 1.54940, — 1.37 x 107°  1.54940, —1.32 x 10 © 1.54940. 2079 x 10 "
0.01 1.54941, —0.00137 1.54941, —0.00137 1.54941, —0.00127 1.54940. 0.00274
0.1 1.55004, —0.01370 1.55010, —0.01367 1.55009, —0.01368 1.54914,  0.02735
1 1.13339, —0.06841 1.60497, —0.10857 1.60393, —0.11016 1.53911. 0.23573
10 0.00037,4.80 x 107 1.80727, - 0.05039 1.81567, —0.05380 0.79008. —0.78614
/=06
0.00001 1.39018, —6.72 x 107° 1.39018, —6.72 x 10°°  1.39008, -6.72 x 107 ° 1.3901s, 0.01343
0.01 1.39017, —0.00672 1.39017, 0.00672 1.39017, —0.00672 1.39026,  0.01343
0.1 1.39465, —0.07324 1.38866, —0.06713 1.39144, —0.06957 1.39847.  0.13383
1 --0.02981, —0.00282 1.24508, —0.63872 1.67208, —0.57094 1.17378, -0.67164
10 ~295 x 107 —244 x 107° —1.08659, —1.09027 2.74525, ~0.26658 2.88309. --0.41722
/=09 i i
, 0.00001 1.23232, —1.865 x 10°° 1.23232, —1.86 x 107%  1.23232,1.86 x 107> 1.23232.3.7 < 10 °
0.01 1.23848, —0.01565 1.22822, —0.01759 1.22888, —0.01769 1.23600, 0.04012
0.1 —0.01488, 0.00048 1.16515, —0.02878 1.15710, —0.03922 1.38217. 0.09497
1 — 147 x 1075,4.89 x 107° 1.15297, —0.00340 1.13689, —0.00498 1.17452, —0.50306
10 1.50542.

—1.47 % 1571°,489 x 107 '¢

1.15282, —0.00034 1.13663, —0.0005

-0.18970
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Table 3.1, and np via Pade [2/2] and Newton wheny, = 4.11,

Table4. , and »p via Pade [2/2] and Newton whenn, = 1.71,

1y = 00116 g = 1.18
v n1al2/21  ne[2/2] Na fp v 1al2/2]  nel2/2] Na 1y

f=03 =03

000001 328347 328348 328347 328348 000001  1.54940  1.54940  1.54941  1.54940

0.01 327950 328750 329155 327555 0.01 1.54804 144078  1.55215  1.54667

0.1 324675 332646 337075 321110 0.1 1.53659  1.56395  1.57723  1.52250

1 320131 379034 445012  3.18081 1 1.50461 172598  1.83485 135232

10 380983 41078 380055  4.19283 10 176421 187191  0.65387  3.78083
=06 f=06

000001 218672  2.18687 218672  2.18687 000001 139018 139019 13902  1.39017

0.01 21194 227003 23586 205539 0.01 138349 139694 140389  1.37703

0.1 208810 33174 59136  2.06918 0.1 132691 146641  1.55278  1.28267

i 332483 402289 329636 373315 1 133982 261404 090328  2.68666

10 369558 377402 432368  3.84644 10 251508 305327  2.54814  3.40014
=09 f=09

000001 06602 066307 066452 0.65877 000001 123230 123234 123236 123228

0.01 1.02421 345276 37777 535486 001 121156 124695 127812  1.19779

0.1 224248 272544 218237  3.68436 0.1 111983 1.19837 148738  1.29655

1 245716 250589  4.86183  3.3717 1 113195  1.14190 091677  2.10745

10 247906 248394  3.88000  3.88086 10 113614 113713 134870 173414

4. THE PHASE AND AMPLITUDE SEPARATION

The solution of equation (4) subject to T(0, y,t) = cos wt
may be written as

T(x, 1) = exp [ —x(0/21)""*] c08 [t — x{w/21.e)'?]  (21)
where 7, is allowed to be complex. If we instead write
T(x,y,1) = exp[ — x{(w/2114)'*] cos [t —x(w/2n)'*]  (22)

with n, and #p real, then we can relate #,, #p to .. For
example, we know that

A= (0/2n,,)'? (1-) (23)
whereas equation (22) leads to
4= (0/23)'7 —i(w/2ng)' 2. (24)
Since
A2 1\ 2
727’A—1_’7;1_2i< > =— 25)
w Hallp ncq
if we write 5., = R+il we get the two equations
nal—np ' =21, (26a,b)
(name) ' = R~

For example, if 7., is real then 7, = yp = #,,, and this is
experimentally known to be false unless v < 1.

We can in fact solve the system exactly to get the following
results:

[1a]™" = +1+(I*+R%)'72,
[ne]™! = —I+(I*+ R,

Numerical results using I and R given by the Newtonized
values of ., are used directly in equations (27), and are
summarized in Tables 3 and 4. The values derived in this
manner agree substantially with those found by Truong and

(27a,b)

Il

Zinsmeister [6], the main difference being a tendency on the
part of the Newtonized values to jump around, whereas the
values from the Pade approximation do demonstrate the
expected behavior. One explanation of the strange behavior
from certain Newtonized values is that the method might be
picking up higher order eigenvalues. In the analytic approach
here, itisclear thatas w — 0,both#, and yp approach ... Both
the analytic and experimental approach clearly demonstrate
that the static equivalent diffusivity is unreliable for non-
vanishingly small values of v. In short, the double-diffusivity
model is a significant improvement over the static #,, model.
Since the quantities 7, Ny, K5, K, / are readily obtained, there
is no practical reason to insist upon the static equivalent.
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